Bias of the corrected AIC criterion for underfitted regression and time series models
نویسندگان
چکیده
The Akaike Information Criterion, AIC (Akaike, 1973), and a bias-corrected version, Aicc (Sugiura, 1978; Hurvich & Tsai, 1989) are two methods for selection of regression and autoregressive models. Both criteria may be viewed as estimators of the expected Kullback-Leibler information. The bias of AIC and AICC is studied in the underfitting case, where none of the candidate models includes the true model (Shibata, 1980, 1981; Parzen, 1978). Both normal linear regression and autoregressive candidate models are considered. The bias of AICC is typically smaller, often dramatically smaller, than that of AIC. A simulation study in which the true model is an infinite-order autoregression shows that, even in moderate sample sizes, AICC provides substantially better model selections than AIC.
منابع مشابه
Bias-corrected AIC for selecting variables in Poisson regression models
ABSTRACT In the present paper, we consider the variable selection problem in Poisson regression models. Akaike’s information criterion (AIC) is the most commonly applied criterion for selecting variables. However, the bias of the AIC cannot be ignored, especially in small samples. We herein propose a new bias-corrected version of the AIC that is constructed by stochastic expansion of the maximu...
متن کاملTesting Ecological Theory Using the Information-theoretic Approach: Examples and Cautionary Results
Ecologists are increasingly applying model selection to their data analyses, primarily to compare regression models. Model selection can also be used to compare mechanistic models derived from ecological theory, thereby providing a formal framework for testing the theory. The Akaike Information Criterion (AIC) is the most commonly adopted criterion used to compare models; however, its performan...
متن کاملGeneral Formula of Bias-corrected Aic in Generalized Linear Models
The present paper considers a bias correction of Akaike’s information criterion (AIC) for selecting variables in the generalized linear model (GLM). When the sample size is not so large, the AIC has a non-negligible bias that will negatively affect variable selection. In the present study, we obtain a simple expression for a bias-corrected AIC (corrected AIC, or CAIC) in GLMs. A numerical study...
متن کاملHydrological Drought Forecasting Using Stochastic Models (Case Study: Karkheh watershed Basin)
Hydrological drought refers to a persistently low discharge and volume of water in streams and reservoirs, lasting months or years. Hydrological drought is a natural phenomenon, but it may be exacerbated by human activities. Hydrological droughts are usually related to meteorological droughts, and their recurrence interval varies accordingly. This study pursues to identify a stochastic model (o...
متن کاملEvaluation of SARIMA time series models in monthly streamflow estimation in Idanak hydrometry station
prediction of hydrological variables is a highly effective tool in water resource management. One of the important tools for modeling hydrological processes is the use of time series modeling and analysis. River series production series can be used by time series models in various studies such as drought, flood, reservoir systems design and many other purposes For this purpose, monthly flow dat...
متن کامل